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The paper studies the size dependence of the surface tension at a weakly curved liquid-vapor interface.
Statistical expressions for the first and the second corrections to the surface tension are derived with the use of
expansion of the first of the equations of the hierarchy of Born-Green-Yvon into a series in terms of the
curvature of the dividing surface. A method of approximate evaluation of the second correction by information
on the properties of a planar liquid-vapor interface is suggested.
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I. INTRODUCTION

The problem of dependence of the surface tensions of
vapor bubbles and liquid droplets on the radius of curvature
of the dividing surfaceR is the subject of numerous theoret-
ical [1–6] and experimental[7–10] investigations. The vari-
ety of approaches and methods has not yet yielded unanimity
even in concepts of the qualitative character of this depen-
dence. For an interface curved sufficiently weakly, the size
dependence of the surface tension may be presented as fol-
lows [4]:

ssJ,Kd = s0 + kC0J + kJ2/2 + k̂K, s1d

wheres0 is the surface tension of a planar interface,C0 is the
spontaneous curvature,k is the rigidity constant of bending,

and k̂ is the rigidity constant associated with the Gaussian
curvature,J=cx+cy is the total curvature, andK=cxcy is the
Gaussian curvature.

A peculiar role in the physics of surface phenomena is
played by spherically symmetric surfaces. Since a sphere has
the smallest area at a given volume, it is the equilibrium
form for a gas bubble or a liquid droplet surrounded by some
other fluid phase. Spherical symmetry is characteristic of
critical nuclei from which the phase transition of the first
kind starts in isotropic systems. In connection with the great
significance of spherical surfaces, we will restrict our consid-
eration in this paper just to this case. For a spherical interface
cx=cy=c=1/R (following Blokhuis and Bedeaux we will
takeR to mean the radius of an equimolar dividing surface),
and consequently,J=2/R, K=1/R2, and expression(1) re-
duces to

ssRd = s0 + s1/R+ s2/R
2, s1 = 2kC0, s2 = 2k + k̂. s2d

Thermodynamic analysis of the size dependence of the
surface tension in the case of a spherical surface leads to the
well-known [11] differential equation

Sd ln s*

d ln c*
D

T

= Sd ln s

d ln c
D

T

=
− 2dc*f1 + dc* + d2c*

2/3g
1 + 2dc*f1 + dc* + d2c*

2/3g
,

s3d

c* =
1

R*
,

which makes it possible to relate corrections to the surface
tension with Tolman’s length

d = R− R* , s4d

where the subscript “*” denotes the quantities pertaining to
the surface of tension. The latter is determined by Laplace’s
equation

pa − pb = 2s* /R* , s5d

wherep is the pressure, the subscript “a” refers to the inner
phase with respect to the curved surface, and “b” to the other
surface. According to expression(3),

s1 = − 2s0d0, s2 = s0s2d0
2 − d1d, s6d

where d0 and d1 are the coefficients of expansion of the
Tolman’s length in terms of curvature

d = d0 + d1/R+ ¯. s7d

Any further determination of the Tolman’s length and correc-
tions to the surface tension is beyond the scope of purely
phenomenological consideration and requires a statistical ap-
proach.

Recently, by calculating the increment of the canonical
partition function of a two-phase system with a curved inter-
face caused by two independent deformations, Blokhuis and
Bedeaux[4] managed to obtain expressions relating curva-
ture corrections to the surface tension with the intermolecu-
lar potentialfsrd and the pair density of the interface. In the
context of the approach suggested by them, the authors[4]
obtained for the surface tension of a planar interfaces0, the
well-known result of Kirkwood and Buff[12]

s0 =
1

4
E dz1E drW12f8srdrs1 − 3s2dr0

s2dsz1,z2,rd, s8d

for the first curvature correction on a spherical surfaces1
two equivalent expressions

s1 =
1

4
E dz1E drW12f8srdrs1 − 3s2dsz1 + z2dr0

s2dsz1,z2,rd,
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s1 =
1

4
E dz1E drW12f8srdrs1 − 3s2dr1

s2dsz1,z2,rd, s10d

and for the second correction,s2 relations

s2 =
1

4
E dz1E drW12f8srdr

3Fs1 − 3s2dz1 + z2

2
r1

s2d −
r2s2

6
s3 − 5s2dr0

s2dG , s11d

s2 =
1

4
E dz1E drW12f8srdr

3Fs1 − 3s2dsr2
s2d + z1z2r0

s2dd +
r2s2

3
s3 − 5s2dr0

s2dG ,

s12d

In the expressions presented, the values of coordinatesz are
counted off from the positionze of the equimolar dividing
surface,r = urW12u, ri

s2d are the coefficients of expansion of the
pair density of the curved interface

rs2dsrW1,rW2d = r0
s2dsz1,z2,rd + r1

s2dsz1,z2,rd/R

+ r2
s2dsz1,z2,rd/R2 + ¯, s13d

and the productsr is the projection of the vectorrW12 on the
direction of the vectorrW1.

The results obtained by Blokhuis and Bedeaux enabled
one to calculate rigorously the value of the first corrections1
to the surface tension in the Lennard-Jones fluid[13,14]. As
is shown by these rigorous calculations, and also by earlier
evaluations in the framework of the method of the density
functional [15] or the van der Waals capillarity theory[6],
the absolute value of the parameterd0 determining according
to (6) the value ofs1 is only tenths of the molecular diam-
eter. Rigorous calculation of the second corrections2 by
formulae(11) and(12) is hampered by the fact that in order
to use them, information on the properties of a planar liquid-
vapor interface is not sufficient, and some extremely cum-
bersome and problematic numerical experiments[14] on
simulation of curved surfaces are required. The result ob-
tained in this case proves to be comparable with its error. At
the same time, owing to the extremely infinitesimal value of
the first correction, information on the value ofs2 may turn
out to be necessary for correct description of the surface
tension, even for sufficiently weakly curved interfaces. Thus
for instance, as is shown by investigations[6,16,17], the
value of the second correction to the surface tension is nec-
essary and sufficient for correct interpretation of experiments
on the boiling-up kinetics of pure fluids and their solutions in
the framework of the homogeneous nucleation theory. In this
connection, the search for alternative expressions for the sec-
ond correction becomes highly topical. To solve this prob-
lem, we use the first of the equations of the Born-Green-
Yvon (BGY) hierarchy.

II. EXPANSION OF THE FIRST OF THE EQUATIONS OF
THE BGY HIERARCHY IN TERMS OF CURVATURE

In the general case, the first of the equations of the BGY
hierarchy[11] will look like

¹rsrW d =
1

kBT
E drW2

rW12

r12
f8srdrs2dsrW1,rW2d. s14d

As applied to a spherically symmetric system, this equation
reduces to

]rsr1d
]r1

=
2p

kBT
E

0

`

r2drE
−1

1

ds sf8srdrs2dsr1,r2,rd, s15d

wheres=cosu12, u12 is the angle betweenrW1 andrW12, andr1
and r2 are the respective distances from the first and the
second particles to the center of the sphere.

Now, by assuming the surface curvature to be weak and
the expansion(13) to be legitimate, we will expand the writ-
ten equation into a series in terms of curvature, keeping the
terms up to the third-order infinitesimals,R−3d. This expan-
sion is similar to the expansions of integrals described by
Blokhuis and Bedeaux in Appendix A of Ref.[4].

The value ofr2= urW2u is determined by the values ofr1, s,
and r, as

r2 = Îr1
2 + 2r1sr + r2, s16d

in which, up to the terms of the third order in terms ofsr / r1d,
we have

Dr = r2 − r1 − sr =
1 − s2

2

r2

r1
FS1 −

sr

r1
D +

1

4

r2

r1
2s5s2 − 1dG .

s17d

Now, we expand the functionrs2dsr1,r2,rd in the vicinity of
rs2dsr1,r1+sr,rd:

rs2dsr1,r2,rd = F1 +
Dr

r

]

]s
+

1

2

sDrd2

r2

]2

]s2 +
1

6

sDrd3

r3

]3

]s3G
3rs2dsr1,r1 + sr,rd. s18d

By substituting the written expansions into(15), we have

]rsr1d
]r1

=
2p

kBT
E

0

`

drf8srdr2E
−1

1

dsFs+
sr

2r1
s1 − s2d

3S1 −
sr

r1
+

5s2 − 1

4

r2

r1
2DS ]

]s
D +

ss1 − s2d2r2

8r1
2

3S1 −
2sr

r1
DS ]2

]s2D +
ss1 − s2d3r3

48r1
3 S ]3

]s3DG
3rs2dsr1,r1 + sr,rd. s19d

Integrating by parts the term that contains the third derivative
with respect tos, we obtain
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]rsr1d
]r1

=
2p

kBT
E

0

`

drf8srdr2E
−1

1

dsFs+
sr

2r1
s1 − s2d

3S1 −
sr

r1
+

5s2 − 1

4

r2

r1
2DS ]

]s
D +

s1 − s2d2r2

8r1
2

3Ss−
5s2 + 1

6

r

r1
DS ]2

]s2DGrs2dsr1,r1 + sr,rd.

s20d

Integrating similarly the term with the second derivative with
respect tos, we come to

]rsr1d
]r1

=
2p

kBT
E

0

`

drf8srdr2E
−1

1

dsFsrs2dsr1,r1 + sr,rd

+
1 − s2

2

r

r1
Ss−

1 − s2

4

r

r1
D ]rs2d

]s
G . s21d

It should be noted that despite the disappearance in the last
expression of the terms proportional tosr / r1d3, calculations
are made with an accuracy of the third order. At last, by
performing the last integration by parts, we finally obtain

]rsr1d
]r1

=
2p

kBT
E

0

`

drf8srdr2

3E
−1

1

dsFs−
1 − 3s2

2

r

r1
−

s

2
s1 − s2d r2

r1
2G

3rs2dsr1,r1 + sr,rd. s22d

Let us denote the distance from the pointrW1 to the dividing
surfaceR along the normal byz1=r1−R. Passing now from
the expansion in terms of 1/r1 to the expansion in terms of
1/R, given by

1

r1
=

1

R
S1 −

z1

R
+

z1
2

R2 − ¯ D , s23d

we transform relation(22) to

]rsr1d
]r1

=
2p

kBT
E

0

`

drf8srdr2E
−1

1

dsHs−
1 − 3s2

2

r

R

+ fz1s1 − 3s2d − srs1 − s2dg r

2R2

+ Fsrs1 − s2d −
z1

2
s1 − 3s2dG rz1

R3Jrs2dsr1,r1 + sr,rd.

s24d

It should be mentioned that in expression(24), the pair den-
sity rs2dsr1,r1+sr,rd and the particle densityrsr1d are the
functions of distribution of a curved interface and character-
ize the distribution of particles at the points located at dis-
tancesz1 and z1+sr along the normal from the equimolar
surface. Just as the surface tension at a curved surface may
differ from its planar limits0, the functionsrs2d and rsr1d
may differ from the corresponding functions of a planar in-

terface. By using expansion(13) for the pair density and a
similar expansion for the particle density

rsr1d = r0sz1d + r1sz1d/R+ r2sz1d/R2 + ¯, s25d

we obtain in relation(24) in the zero order in terms ofs1/Rd:

kBT
]r0sz1d

]z1
=E drWf8srdsr0

s2dsz1,z1 + sr,rd, s26d

in the first order

kBT
]r1sz1d

]z1
=E drWf8srdFsr1

s2d −
1 − 3s2

2
rr0

s2dG , s27d

in the second order

kBT
]r2sz1d

]z1
=E drWf8srdHsr2

s2d −
1 − 3s2

2
rr1

s2d

+ fz1s1 − 3s2d − srs1 − s2dg r

2
r0

s2dJ , s28d

and in the third order

kBT
]r3sz1d

]z1
=E drWf8srdHsr3

s2d −
1 − 3s2

2
rr2

s2d

+ fz1s1 − 3s2d − srs1 − s2dg r

2
r1

s2d

+ Fsrs1 − s2d −
z1

2
s1 − 3s2dGrz1r0

s2dJ .

s29d

If Eq. (26) is nothing but Eq.(14) of BGY written as applied
to a planar interface, the deduced equations(27)–(29) are
new relations which relate different coefficients of expan-
sions of the pair(13) and the particle(25) densities. In Sec.
III, we shall use these relations to derive statistical expres-
sions for the first and the second curvature corrections to the
surface tension.

III. APPLICATION OF THE RELATION OBTAINED TO
THE PROBLEM OF SIZE DEPENDENCE OF THE

SURFACE TENSION

Integration of the obtained relations(26)–(29) with re-
spect toz1 from the pointza, where the homogeneity of the
phasea is achieved, to the corresponding pointzb in the
second phase, gives

kBTsra,0 − rb,0d −
1

6
E drWf8srdrfra,0

s2d srd − rb,0
s2d srdg = 0,

s30d

kBTsra,1 − rb,1d −
1

6
E drWf8srdrfra,1

s2d srd − rb,1
s2d srdg

=
1

2
E

za

zb

dz1E drWf8srdrs1 − 3s2dr0
s2d, s31d
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kBTsra,2 − rb,2d −
1

6
E drWf8srdrfra,2

s2d srd − rb,2
s2d srdg

=
1

2
E

za

zb

dz1E drWf8srdrs1 − 3s2dr1
s2d

−
1

2
E

za

zb

dz1E drWf8srdrfz1s1 − 3s2d − srs1 − s2dgr0
s2d,

s32d

kBTsra,3 − rb,3d −
1

6
E drWf8srdrfra,3

s2d srd − rb,3
s2d srdg

=
1

2
E

za

zb

dz1E drWf8srdrs1 − 3s2dr2
s2d

−
1

2
E

za

zb

dz1E drWf8srdrfz1s1 − 3s2d − srs1 − s2dgr1
s2d

−E
za

zb

z1dz1E drWf8srdrFsrs1 − s2d −
z1

2
s1 − 3s2dGr0

s2d,

s33d

In deriving (30)–(33), use was made of the transformation of
integralsL0,i [see Appendix, Eqs.(A1) and (A4)], to yield

L0,i =E
za

zb

dz1E drWf8srdsri
s2d

=−
1

6
E drWf8srdrfra,i

s2dsrd − rb,i
s2dsrdg . s34d

Next, it should be noted that according to the statistical
determination of pressure in a homogeneous fluid

psrd = rkBT −
1

6
E drWf8srdrrs2dsrd, s35d

the coefficients of expansion of the pressure differencespa

−pbd are written at the left of Eqs.(30)–(33), as

pa − pb = spa − pbd0 + spa − pbd1/R+ spa − pbd2/R
2 + ¯.

s36d

On the other hand, the pressure difference in coexistent
phases is connected with the surface tension through
Laplace’s equation, which for an equimolar dividing surface
takes the form

pa − pb =
2s

R
+ Fds

dR
G =

2s0

R
+

s1

R2 +
0

R3 , s37d

where the well-known[11] equality of derivatives

Fds

dR
G = S ]s

]R
D

T
= −

s1

R2 −
2s2

R3 + ¯ s38d

is used. When using(35)–(37), we see that expression(30)
reduces to the equality of pressures above a planar interface,
and expressions(31) and (32) yield

2s0 =
1

2
E

za

zb

dz1E drWf8srdrs1 − 3s2dr0
s2d, s39d

s1 =
1

2
E

za

zb

dz1E drWf8srdrs1 − 3s2dr1
s2d

−
1

2
E

za

zb

z1dz1E drWf8srdrs1 − 3s2dr0
s2d

+
1

2
E

za

zb

dz1E drWf8srdr2ss1 − s2dr0
s2d, s40d

J1 − J2 =E
za

zb

dz1E drWf8srdr2ss1 − s2dr1
s2d

− 2E
za

zb

z1dz1E drWf8srdr2ss1 − s2dr0
s2d

+E
za

zb

z1
2dz1E drWf8srdrss1 − 3s2dr0

s2d, s41d

where the following designations are introduced:

J1 =E
za

zb

z1dz1E drWf8srdrs1 − 3s2dr1
s2d,

s42d

J2 =E
za

zb

dz1E drWf8srdrs1 − 3s2dr2
s2d.

The first of the obtained relations leads us to the well-known
virial expression of Kirkwood and Buff(8). In the second
expression, when transforming the last integral according to
[see Appendix, Eqs.(A1) and (A4)]

1

2
E

za

zb

dz1E drWf8srdr2ss1 − s2dr0
s2d

=E
za

zb

dz1E drWf8srdr2ss1 − 3s2dr0
s2d. s43d

We see that it is a combination of the expressions(9) and
(10) for the coefficients1.

The last of the obtained expressions(41) does not contain
any information on the second correction to the surface ten-
sion as the terms of the third order in relation(37) cancel out,
but it contains the same integrals as Eqs.(11) and (12),
which determine the value ofs2. By subtracting(12) from
(11), we come to

J1 − J2 =
1

2
E

za

zb

dz1E drWf8srdr3s2s3 − 5s2dr0
s2d

+E
za

zb

dz1E drWf8srdrs1 − 3s2dz1z2r0
s2d

−
1

2
E

za

zb

dz1E drWf8srdr2ss1 − 3s2dr1
s2d, s44d
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Comparison of the last relation with(41) with allowance for
the transformation of integrals[Appendix, Eqs.(A5) and
(A8)] shows that relation(41) is in complete agreement with
statistical expressions for the second curvature correction to
the surface tension. Hence, the obtained result(41) may be
regarded as confirmation of the equivalency of Eqs.(11) and
(12).

Besides the confirmation of statistical expressions
(8)–(12), relations(27)–(29) derived in the previous part may
be used for obtaining additional information on the integrals
determining the second corrections2. For further analysis,
we shall expand into a series in terms of the curvature of the
dividing surface the relation determining the equimolar ra-
dius

E
0

`

r2srsrd − rabddr = 0, rab = Hra, r , R,

rb, r . R.
s45d

Using (25) and passing on to the variablez=r −R, we have

E
−`

` S1 +
2z

R
+

z2

R2DFsr0 − rab,0d +
r1 − rab,1

R
+

r2 − rab,2

R2

+
r3 − rab,3

R3 Gdz= 0. s46d

By assembling the terms at the same degrees ofs1/Rd in the
zero order, we obtain the determination of the equimolar sur-
face at a planar interface

E zSdr0

dz
Ddz= 0, s47d

in the first order

E zSdr1

dz
Ddz= −E z2Sdr0

dz
Ddz, s48d

and in the second order

E zSdr2

dz
Ddz= −

1

3
E z3Sdr0

dz
Ddz−E z2Sdr1

dz
Ddz. s49d

With allowance for the relations obtained, it can be shown
that additional multiplication of Eq.(26) by z1 and integra-
tion give

E
za

zb

z1dz1E drWf8srdsr0
s2d = 0. s50d

Similarly, Eq. (27) leads to

kBTE z2Sdr0

dz
Ddz=E

za

zb

z1dz1E drWf8srdsr1
s2d

+
1

2
E

za

zb

z1dz1E drWf8srdrs1 − 3s2dr0
s2d,

s51d

and Eq.(28) to

−
kBT

3
E z3Sdr0

dz
Ddz− kBTE z2Sdr1

dz
Ddz

=E
za

zb

z1dz1E drWf8srdsr2
s2d −

J1

2

+
1

2
E

za

zb

z1
2dz1E drWf8srdrs1 − 3s2dr0

s2d

−
1

2
E

za

zb

z1dz1E drWf8srdr2ss1 − s2dr0
s2d. s52d

A relation for the second integral in the left side of Eq.(52)
will be obtained by additional multiplication of Eq.(27) by
z1

2 and integration as

kBTE z2Sdr1

dz
Ddz=E

za

zb

z1
2dz1E drWf8srdsr1

s2d

−
1

2
E

za

zb

z1
2dz1E drWf8srdrs1 − 3s2dr0

s2d.

s53d

The last two relations make it possible to write for the inte-
gral J1,

J1 = −E
za

zb

z1dz1E drWf8srdr2ss1 − s2dr0
s2d

+
2

3
kBTE z3Sdr0

dz
Ddz+ 2I1 + 2I2, s54d

where

I1 =E
za

zb

z1
2dz1E drWf8srdsr1

s2d, I2 =E
za

zb

z1dz1E drWf8srdsr2
s2d.

s55d

The relation obtained for the integralJ1 determines the alter-
native means of calculating the second correction to the sur-
face tension. Combining(11) and (54) with allowance for
transformation of(A1) and (A4), we get

s2 = −
1

4
E

za

zb

z1dz1E drWf8srdr2ss1 − s2dr0
s2d

+
1

6
kBTE z3Sdr0

dz
Ddz+

1

60
E drWf8srdr3fra,1

s2d − rb,1
s2d g

+ 2I1 + 2I2, s56d

This expression, of course, is not simpler for calculating the
second corrections2 than expressions(11) and (12), but on
the basis of it, a new approximate evaluation ofs2 may be
suggested.

Relation(50) obtained earlier makes it possible to assume
that the integralsI1 and I2 make a small contribution to ex-
pression(56). If they are neglected, all the remaining terms
in (56) may be determined on the basis of numerical experi-
ments on simulation of two-phase systems with a planar in-
terface and one-phase systems. Thus, for instance, the func-
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tions ra,1
s2d , rb,1

s2d determining the rate of change of the pair
density in homogeneous phases may be expressed through
the coefficients of expansion(25) for the particle density

ra,1
s2d = Sdrs2d

dr
D

a,s
ra,1, rb,1

s2d = Sdrs2d

dr
D

b,s
rb,1, s57d

where the subscript “s” denotes the state of equilibrium co-
existence of phases(binodal). In their turn, the coefficients
ra,1, rb,1 are determined by the system of equations

1

ra,s
S ]p

]r
D

a,s
ra,1 =

1

rb,s
S ]p

]r
D

b,s
rb,1,

s58d

2s0 = S ]p

]r
D

a,s
ra,1 − S ]p

]r
D

b,s
rb,1,

the first of which follows from the condition of equality for
the chemical potentials of phases, and the second from
Laplace’s equation(37).

Of course, generalization of the result(50) to the integrals
I1 andI2 is no more than an assumption. Another assumption
of the same kind for approximate evaluation of the second
correction to the surface tension was made by Blokhuis and
Bedeaux [4]. However, as distinct from the hypothesis
adopted in Ref.[4], the legitimacy of our assumption may be
checked indirectly owing to relation(51). This relation con-
tains an integral(the first on the right) of the intermediate
type between the integral of expression(50) and the integrals
I1 andI2. Rigorous calculation in simulating the planar inter-
facial layer of the remaining terms in(51) will make it pos-
sible either to rule out or to indirectly confirm the above
assumption.

IV. CONCLUSION

The expansion of the first of the equations of the BGY
hierarchy in terms of curvature has been studied in the
framework of the investigation performed. A number of re-
lations have been obtained for connecting the expansion co-
efficients of one- and two-particle distribution functions of
an interfacial layer. These relations are used for analyzing the
size dependence of the surface tensions. It is shown that
they are in complete agreement with the statistical expres-
sions recently obtained for the first and the second curvature
corrections tos. A statistical expression for the second cor-
rection to the surface tension has been obtained. A method
for approximate evaluation of the second correction on the
basis of numerical experiments on simulation of a two-phase
system with a planar interface and a one-phase system has
been suggested.
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APPENDIX

When relations(26) and (27) are integrated with respect
to z1, the first integrals on the right take the form

L0,i =E
za

zb

dz1E drWf rsrdfsssdri
s2dsz1,z1 + sr,rd, sA1d

where f rsrd is an arbitrary function andfsssd is an odd func-
tion of s, i.e., fss−sd=−fsssd, andri

s2d is one of the expansion
functions (13). A correct method of calculating an integral
similar to (A1) was first demonstrated by Waltonet al.[18].
On account of the odd character of the functionfsssd, addi-
tion to the integrand of a constant has no effect on the value
of the integral, and we can present integral(A1) as follows:

L0,i = 2pE
0

`

f rsrdr2drE
za

zb

dz1E
−1

1

dsfsssdfri
s2dsz1,z1 + sr,rd

− rab,i
s2d sz1,zedg , sA2d

whererab,i
s2d =ra,i

s2d at z1,ze, andrab,i
s2d =rb,i

s2d at z1.ze. It is not
difficult to notice that the pairs of particles for whichz1,0
and z2,0 (or, on the contrary,z1.0 and z2.0) give no
contribution to the integral in view ofri

s2dsz1,z2,rd=ri
s2d

3sz2,z1,rd. By keeping the pairs whose particles are on dif-
ferent sides of the dividing surface, we obtain

L0,i = 2pE
0

`

f rsrdr2drHE
−1

0

dsE
0

−sr

dz1fsssdfri
s2d − rb,i

s2dg

+E
0

1

dsE
−sr

0

dz1fsssdfri
s2d − ra,i

s2dgJ . sA3d

In the last expression, the terms that contain the function
ri

s2dsz1,z1+sr,rd also cancel, and after some simple transfor-
mations, we come to the desired result

L0,i = −
1

2
E drWf rsrdrf sssdsfra,i

s2dsrd − rb,i
s2dsrdg , sA4d

where at a given form of the functionfsssd integration with
respect tos may be fulfilled. Thus, all the integralsL0,i may
be determined by the properties of homogeneous phasesra,i

s2d

andrb,i
s2d in the vicinity of their equilibrium coexistence(bin-

odal).
Now we shall show the transformation of integral of the

following type:

L1,i =E
za

zb

z1dz1E drWf rsrdfsssdri
s2dsz1,z1 + sr,rd. sA5d

Using the relation

z1 = sz1 + z2d/2 − sr/2, sA6d

we shall present(A5) in the form of the sum of two integrals

L1,i = −
1

2
E

za

zb

dz1E drWf rsrdrf sssdsfri
s2dsz1,z1 + sr,rd − rab,i

s2d g

+
1

2
E

za

zb

dz1E drWf rsrdfsssdsz1 + z2dfri
s2dsz1,z1 + sr,rd

− rab,i
s2d g . sA7d
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By transforming the second integral on the right in the same
way as(A1), it is not difficult to show that it is equal to zero.
Thus,

L1,i = −
1

2
E

za

zb

dz1E drWf rsrdrf sssdsfri
s2dsz1,z1 + sr,rd − rab,i

s2d g .

sA8d
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