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Curvature corrections to surface tension
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The paper studies the size dependence of the surface tension at a weakly curved liquid-vapor interface.
Statistical expressions for the first and the second corrections to the surface tension are derived with the use of
expansion of the first of the equations of the hierarchy of Born-Green-Yvon into a series in terms of the
curvature of the dividing surface. A method of approximate evaluation of the second correction by information
on the properties of a planar liquid-vapor interface is suggested.
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I. INTRODUCTION 1
. Ce = —
The problem of dependence of the surface tensroof R.

vapor bubbles and liquid droplets on the radius of curvature | . . . .
of the dividing surfaceR is the subject of numerous theoret- which makes it pos§|ble to relate corrections to the surface
ical [1-6] and experimentdl7—1( investigations. The vari- tension with Tolman’s length

ety of approaches and methods has not yet yielded unanimity 5=R-R., (4)

even in concepts of the qualitative character of this depen- I - -
dence. For an interface curved sufficiently weakly, the siz&Vhere the subscript “*” denotes the quantities pertaining to

dependence of the surface tension may be presented as ithe sqrface of tension. The latter is determined by Laplace’s
lows [4]: equation

pa_ pBZZO'*/R*, (5)

o(3,K) = g + KCoJ + kIH2 + KK, (1)
wherep is the pressure, the subscript™refers to the inner

wherea, is the surface t?“S'O” .Of. a planar interfaCg s the phase with respect to the curved surface, gsitht the other
spontaneous curvaturk,is the rigidity constant of bending, surface. According to expressig8)

andk is the rigidity constant associated with the Gaussian
curvature J=c,+c, is the total curvature, and=c,c, is the 01 = = 2008, 2= 09(285~ 81, (6)
Gaussian curvature. where &, and 8, are the coefficients of expansion of the

A peculiar role in the physics of surface phenomena isrgiman's length in terms of curvature
played by spherically symmetric surfaces. Since a sphere has

the smallest area at a given volume, it is the equilibrium 0=6g+ 6/R+ -, (7)

form for a gas bubble or a liquid droplet surrounded by some

other fluid phase. Spherical symmetry is characteristic OtAny further determination of the Tolman’s length and correc-
. P! - =P y yIs C . _~tions to the surface tension is beyond the scope of purely
critical nuclei from which the phase transition of the first

. S . . . henomenological consideration and requir istical ap-
kind starts in isotropic systems. In connection with the greaE enomenological consideration and reqires a statistical ap

S . : . - proach.
significance of spherical surfaces, we will restrict our consid-

L . . o Recently, by calculating the increment of the canonical
eration in this paper just to this case. For a spherical 'nterfaCSartition function of a two-phase system with a curved inter-
cx=¢,=c=1/R (following Blokhuis and Bedeaux we will

takeR to mean the radius of an equimolar dividing surface face caused by two independent deformations, Blokhuis and

. Bedeaux[4] managed to obtain expressions relating curva-
_ —1/R2 i,
gzgegotrésequentlw—ZIR, K=1/R’, and expressionl) re ture corrections to the surface tension with the intermolecu-

lar potentialg(r) and the pair density of the interface. In the
o(R) = 09+ 01/R+ 0,/R2, oy =2kCy, 0= 2K+ K. 2) context of the approach suggested by them, the aufdgrs
obtained for the surface tension of a planar interfagethe

Thermodynamic analysis of the size dependence of thell-known result of Kirkwood and Buff12]
surface tension in the case of a spherical surface leads to the

- i i i 1 .,
well-known [11] differential equation oo= . f dzlf dF b (r)r(l _ 3sz)p§,2)(zl,22,r), (8)
dino.\ [(dino| _ —28c[1+dc. + &3]
dinc./; \dinc/; 1+2sc[1+dc +82c%3]’ for the first curvature correction on a spherical surfage

3) two equivalent expressions
1 -3 !
1=y f dz1f drypp (Nr(1 - 38%) (21 + 2)pY (21, 22,1),
*Corresponding author. Email address: grey@itp.uran.ru (9
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fdzljdr12¢ (r(1-32)pP(z,2,1), (10)

and for the second correction, relations

1 2 ’
(TZZZJdZ]_Jdrlz(ﬁ (r)l’

[<1 ) 222 -

1 Y
gy = Z f dzlf dr12¢ (r)r

X {(1 - 32)(p¥ + zop) + —(3 552)p<2>] :

(12

(3 55%) piy } (11)

In the expressions presented, the values of coordirzates
counted off from the positiorz, of the equimolar dividing
surface,r =|r4, pi(z) are the coefficients of expansion of the
pair density of the curved interface

P(z)(rli M) = pEJZ)(ZleZ:r) + pg.Z)(ZleZr)/R

+ p2 (21,25, 1)IR? + (13)

and the producsr is the projection of the vectat;, on the
direction of the vectory.
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II. EXPANSION OF THE FIRST OF THE EQUATIONS OF
THE BGY HIERARCHY IN TERMS OF CURVATURE

In the general case, the first of the equations of the BGY
hierarchy[11] will look like

Vo) = —=

KeT (a4

T -
fdrz_d”(r)l)(z)(rl,rz)-
2
As applied to a spherically symmetric system, this equation
reduces to

ap(rl) 2 f

. kBTJ dr| dssp'(r)p@(ry,rpr), (15)
wheres=co0s#,,, 6, is the angle between, andr,, andr;
andr, are the respective distances from the first and the
second particles to the center of the sphere.

Now, by assuming the surface curvature to be weak and
the expansioril3) to be legitimate, we will expand the writ-
ten equation into a series in terms of curvature, keeping the
terms up to the third-order infinitesiméatR™3). This expan-
sion is similar to the expansions of integrals described by
Blokhuis and Bedeaux in Appendix A of Rg#].

The value ofr,=|r,| is determined by the values of, s,
andr, as

rp= i+ 2rysr+ 12, (16)
in which, up to the terms of the third order in terms(ofr),
we have

The results obtained by Blokhuis and Bedeaux enabled

one to calculate rigorously the value of the first correctign
to the surface tension in the Lennard-Jones f[ti814. As

is shown by these rigorous calculations, and also by earlier
evaluations in the framework of the method of the density

functional [15] or the van der Waals capillarity theof$],
the absolute value of the parameggrdetermining according
to (6) the value ofo is only tenths of the molecular diam-
eter. Rigorous calculation of the second correctignby
formulae(11) and(12) is hampered by the fact that in order

to use them, information on the properties of a planar liquid-
vapor interface is not sufficient, and some extremely cum-

bersome and problematic numerical experimefitd] on

sr\ 1r?
Ar=ro—ry— l—r—)+ZP(582—l):|.
1 1

(17)

Now, we expand the functiop®(ry,r,,r) in the vicinity of
p2(ry,ry+sr,r):

Arg 1(A 2 7 L@ 34
p(Z)(rlarZ!r) = |:1 + _r ( 2) ( ;)
ras 2 12 a2 6 18 g
Xp(ry,ry+snr). (18)

simulation of curved surfaces are required. The result ob

By substituting the written expansions intb5), we have
tained in this case proves to be comparable with its error. At y g P

the same time, owing to the extremely infinitesimal value of (r) 1 sr
the first correction, information on the value @ may turn e dr¢ (nr f ds{s+ —(1-9)
out to be necessary for correct description of the surface oy keTJo 2ry

tension, even for sufficiently weakly curved interfaces. Thus sr 552 1r s(1-22)22

for instance, as is shown by investigatiof§16,17, the X (1 -— )( ) —_—
value of the second correction to the surface tension is nec- r1 4 s 8rg

essary and sufficient for correct interpretation of experiments 2sr\[ #\ s(1-¢)3%3

on the boiling-up kinetics of pure fluids and their solutions in (1 - )(g) + TF’(E)

the framework of the homogeneous nucleation theory. In this 1

connection, the search for alternative expressions for the sec- Xp(ry,ry+srr). (19

ond correction becomes highly topical. To solve this prob-

lem, we use the first of the equations of the Born-Greenintegrating by parts the term that contains the third derivative

Yvon (BGY) hierarchy. with respect tos, we obtain
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ap(ry) _ 2m sr
Yo T kBTf dre’ (r)r f ds{s+ (1-99)
X(l_s_r+532—1r )( ) (1-9)x?
ry 4 dJs 8r2

55+ 1
><< 6+ ﬁ)(g)}p(z)(rl,rﬁsr,r).

(20)

Integrating similarly the term with the second derivative with

respect tas, we come to

ap(r) _2m (. !
Tll :EFL dre (r)rZJ_ld sp?(ry,ry+srr)
1-¢° 1-52r\op?
. L(s— L) & } 21)
2 1y 4 rqy) s

It should be noted that despite the disappearance in the last

expression of the terms proportional (td'r,)3, calculations

are made with an accuracy of the third order. At last, by

performing the last integration by parts, we finally obtain

ap(rl) _2_77 ” ’ 2
<9I’1 - kBT 0 dr¢ (r)r
! 1-3%r s r2
x| de{s—-———-=(1-99)—
f—l S[S 2 n 2( )ri

Xp@(ry,ry+srnr). (22)

Let us denote the distance from the paiptto the dividing
surfaceR along the normal by, =r;—-R. Passing now from
the expansion in terms of Ly to the expansion in terms of

1/R, given by
1 1( )
1-—= -,
ri R R
we transform relatiorf22) to
ap(ry) 27 [~ ! 1-3r
p(ry) - _Wf dr¢/(r)r2f ds! s— —
ary  kgTJg 1 2 R

+[2(1-38%) -sr(1- 52)]

1

R2 (23

2R?
[sr(l 32)——(1 352)}R3} p@(ry,ry+srr).

(24)

It should be mentioned that in expressi@4), the pair den-
sity p@(rq,ry+sr,r) and the particle density(r;) are the
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terface. By using expansiofi3) for the pair density and a
similar expansion for the particle density

p(r1) = po(z1) + pa(z)/R+ pp(z)[RE + -+, (25
we obtain in relatior{24) in the zero order in terms dfL./R):

J,
kBT%:f digp’ (N)sp?(zy, 21+ s,r), (26)
1
in the first order
dpy(z1) L 1-3
T = = f ds (r>[3p<12>- rpg”], (27)
Z1 2

in the second order

dpa(z1)

z) (., (2)_1—352
P —de¢ (r){sz 5

+[2(1 - 3% - sr(1 - sz)] (2)}, (28)

kBT r P 5_2)

and in the third order

393(21)

+[2(1-3) -sr(1 - o

o

kT P21

[sr(l ) - (1 382):|I‘21p0 }
(29)

If EQ. (26) is nothing but Eq(14) of BGY written as applied

to a planar interface, the deduced equati¢2®—29) are
new relations which relate different coefficients of expan-
sions of the pai(13) and the particlg¢25) densities. In Sec.

Ill, we shall use these relations to derive statistical expres-
sions for the first and the second curvature corrections to the
surface tension.

Ill. APPLICATION OF THE RELATION OBTAINED TO
THE PROBLEM OF SIZE DEPENDENCE OF THE
SURFACE TENSION

Integration of the obtained relation6)—29) with re-
spect toz; from the pointz,, where the homogeneity of the
phasea is achieved, to the corresponding poiy in the
second phase, gives

1
keT(po0~ Ppo0) ~ f drg’ (Nr[py(r) - pZp(r] =0,
(30)

functions of distribution of a curved interface and character-
ize the distribution of particles at the points located at dis-
tancesz; and z;+sr along the normal from the equimolar
surface. Just as the surface tension at a curved surface may
differ from its planar limito,, the functionsp'® and p(r;)

may differ from the corresponding functions of a planar in-

011603-3
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1
kBT(Pa,Z_PB,Z)_EJdrd’ (P24 - pieh(n]
= %rﬁ dzlf digp’ (rr(1 - 3s%)p'?

——f dzlfdrqs (Or[z(1-38%) - sr(1 - ]p?,

(32)

(2)

KeT(Pa3=Pp2) = f dig (Nr[p24(r) = p2a(n) ]

:%fﬁdzlfdF¢'(r)r(l—3Sz)p<22)
1 (%
_EJ d21J digp’ (Nr[zy(1 - 36%) - sr(1 -9 |p?

—fZﬂzldzlfdF¢’(r)r{sr(1—52)—%(1—3sz) p2

(33)

In deriving (30)<(33), use was made of the transformation of
integralsLy; [see Appendix, EqgAl) and(A4)], to yield

J dzljdrd> (r)sp?

f dig’ (Nr[pl(r) = pZln]. (39)

Next, it should be noted that according to the statistica
determination of pressure in a homogeneous fluid

P(p) = pkBT——fdrcﬁ (rp?(r), (35)

the coefficients of expansion of the pressure differefge
—pp) are written at the left of Eq¥30)<33), as

Pa ~ Ps= (pa_ p,B)O+ (pa_ pﬁ)1/R+ (pa— pB)Z/R2+ cer,
(36)

On the other hand, the pressure difference in coexiste
phases is connected with the surface tension throu

takes the form

) _2_U+[da] ades @
PaPe= R " arR|" R "R R
where the well-knowrj11] equality of derivatives
do do o1 20,
— == =-=-== 38
[dR] (0R>T R R (38)

is used. When using35)—37), we see that expressiqf0)

reduces to the equality of pressures above a planar interface,

and expression&31) and(32) yield

o

Laplace’s equation, which for an equimolar dividing surfaceb

PHYSICAL REVIEW E 70, 011603(2004

200== f dz f digp’ (Nr(1-3)p2, (39)

f dzlfdr(,/; (Nr(1-38)p{?
_Ef zldzlfdw'(r)r(l—ssZ)ng)

f dz f dig’ (r)r2s(1-s2)pd, (40)

Jz—f dzlfdrgb (Nr2s(1 -s)p?
—Zf zldzlfdw’(r)rzs(l—sz)pf)z)

+ f Bzﬁdzl f digp’ (rs(1 - 39)p?,  (41)

where the following designations are introduced:

lefledzlfdF¢'(r)r(1—352)P(12),
) (42
Jzzfdelfdfgb’(r)r(l—Bsz)p(zz).

The first of the obtained relations leads us to the well-known
virial expression of Kirkwood and Buft8). In the second
gxpression, when transforming the last integral according to
[see Appendix, EqgAl) and(A4)]

% J “dz, J drg’ (Nrs(1 -s)pf?

= f del f dig'(Nr2s(1-39)p2. (43

We see that it is a combination of the expressi@sand
(10) for the coefficiento.

The last of the obtained expressiaqdd) does not contain
ny information on the second correction to the surface ten-
ion as the terms of the third order in relati@T) cancel out,
ut it contains the same integrals as E@kl) and (12),
which determine the value af,. By subtracting(12) from
(11), we come to

1= = % f "z f digp' (Nris(3 - 5s9)pf?
+ J del f dig’ (Nr(1 - 39z, z,p

(44)

——f dzlfdni) (Nrés(1 - 3s9)p?

011603-4
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Comparison of the last relation witd1) with allowance for keT dpo dp,
the transformation of integralfAppendix, Egs.(A5) and ‘?Jza 4z dz- kBTfZZ . dz
(A8)] shows that relatio4l) is in complete agreement with
statistical expressions for the second curvature correction to ([ ., 2 %
the surface tension. Hence, the obtained re@lilf may be =| adz | dig'(spy" — 5
regarded as confirmation of the equivalency of E@%) and “a
(12). 1% oy
Besides the confirmation of statistical expressions +§L Zidzlfdr(b (Nr(L-38)pg

(8)—(12), relations(27)—«29) derived in the previous part may
be used for obtaining additional information on the integrals 1% N @
determining the second correctier. For further analysis, - Ef zdz | dig'(Nr*s(1-s)pg . (52
we shall expand into a series in terms of the curvature of the “a
dividing surface the relation determining the equimolar ra-A relation for the second integral in the left side of E§_2)
dius will be obtained by additional multiplication of Eq27) by
Z and integration as

Pur T<R,

(45)

d %
pg T>R. keT f f(d—pzl)dzz J Zdz J dig’ (r)sp'?
ZLY

Using (25) and passing on to the varialter -R, we have

” 2z 7 P1~ Papi . P2~ Pa
[ REIE

f r?(p(r) = pap)dr=0, p,s= {

0

—%Lﬁzidzlfch/)’(r)r(l—Ssz)pgz).

2
R R (53)
L P3” Paéﬁ}dzz 0. (46) The last two relations make it possible to write for the inte-
=& gral Jq,
By assembling the terms at the same degred4 ) in the I Lo @
zero order, we obtain the determination of the equimolar sur- Ji=- , zdz | dre'(nr 5(1 _Sz)po
face at a planar interface “
2 d
dpo +—kBTf f(ﬂ>dz+ 21, + 21, (54)
Jz(—)dzzo, (47) 3 dz
dz
where

in the first order 25 25
g g = f Zdz, f dig’ (Nsp?, 1,= f zdz f dig’ (r)sps?.
fz(il)dF—fzz(ﬂ)dz, (48) Za %
dz dz (55)
and in the second order The relation obtained for the integrd determines the alter-
native means of calculating the second correction to the sur-

fz(%)dz:—}ff(%)dz—fzz<%>dz. (49) face tension. Combiningll) and (54) with allowance for
dz 3 dz dz transformation o{Al) and(A4), we get

With allowance for the relations obtained, it can be shown 1 (% N2 2),2
that additional multiplication of Eq(26) by z; and integra- T2=" , zdz | di¢'(nres(1-5")pg
tion give “

1 dpo) 1 R
+ ~kgT z3<— dz+ — | dig’ (Nr¥p@, - pi2,
e J 4z /9% &0 re'(rr [Pa,l P

B
f zldzlde¢>’(r)Sp52>=0. (50)
Za +20,+2l,, (56)

Similarly, Eq.(27) leads to This expression, of course, is not simpler for calculating the

d 25 second correctiolr, than expressiongll) and(12), but on
kBTJ £<ﬂ>dz:J zldzlf dF¢'(r)sp(12) the basis of it, a new approximate evaluationogfmay be
dz Z, suggested.
1 (% Relation(50) obtained earlier makes it possible to assume
+ —J zld21J dig’ (Nr(1-3)p?, that the integrald, andl, make a small contribution to ex-

2J,, pression(56). If they are neglected, all the remaining terms

(52) in (56) may be determined on the basis of humerical experi-

ments on simulation of two-phase systems with a planar in-
and Eq.(28) to terface and one-phase systems. Thus, for instance, the func-
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tions pf)l, p(ﬁz)l determining the rate of change of the pair g = @
density in homogeneous phases may be expressed through Lo, =f dzlf drf (Nf(s)pi”(zzs +sr,r), (A1)
the coefficients of expansiqi25) for the particle density Za
do@ do@ wheref,(r) is an arbitrary function andl(s) is an odd func-
@ (2P @ (9P - - —g)=— @ i
al ( ) Pa,1s pﬁ'l—< ) P (57)  tionofs, i.e., f(-s)=-f4(s), andp,” is one of the expansion
dp /us dp /ps functions (13). A correct method of calculating an integral
where the subscripts" denotes the state of equilibrium co- Similar to (A1) was first demonstrated by Waltat al[18].
existence of phaseginoda). In their turn, the coefficients On account of the odd character of the functiafs), addi-

Pa1 Ppa are determined by the system of equations tion to the integrand of a constant has no effect on the value
’ ’ L L of the integral, and we can present integral) as follows:
p p
5] s ) oo v [ [* st
Pas\P/ as Pps\9P/ ps Loj=27| f.(nrdr] dz deS(S)[pi (24,24 + s1,1)
(58) 0 2, -1

0 0
20'0: <_p) Pa1™ <_p) pB,l’ - p(azé,i(zlize)]’ (A2)

W/ s ap B.s

i ) " , Wherepfgi:pf? atz; <z, andpféi:p(ﬁz? atz; >z. Itis not
the first of which follows from the condition of equality for gfficult to notice that the pairs of particles for whigh<0

the che,mical potentials of phases, and the second froqnq 7, <0 (or, on the contraryz,>0 andz,>0) give no

Laplace’s equatio37). _ contribution to the integral in view op?(z;,2,r)=p?
Of course, generalization of the res@®0) to the integrals X (2,,21,1). By keeping the pairs whose plarticles are 6n dif-

[, andl, is no more than an assumption. Another assumptio erezn,t 1s’ide;s of the dividing surface, we obtain

of the same kind for approximate evaluation of the secon '

correction to the surface tension was made by Blokhuis and * 5 0 s @ _ @

Bedeaux [4]. However, as distinct from the hypothesis  Loi= 27Tf f(r)rdr f de dzfys)[p® - p2]

adopted in Ref[4], the legitimacy of our assumption may be 0 -1 Jo

checked indirectly owing to relatiof61). This relation con- 1 0 ®_ @

tains an integrafthe first on the rightof the intermediate + J ds f dzafys)[p®-p3] 1. (A3)

type between the integral of expressi®0) and the integrals 0 s

I, andl,. Rigorous calculation in simulating the planar inter- |n the last expression, the terms that contain the function

facial layer of the remaining terms 1) will make it pos- ;@ (z 7 +sr,r) also cancel, and after some simple transfor-
sible either to rule out or to indirectly confirm the above mations, we come to the desired result

assumption.
1 "
IV. CONCLUSION Lo,i=—§fdrfr(r)rfs(S)S[pif?(r)—piaz,i)(r)], (A4)

The expansion of the first of the equations of the BGY . . . . .
hierarchy in terms of curvature has been studied in théNhere at a given form of the functiofy(s) integration with

framework of the investigation performed. A number of re- respect to; may be fulfilled. Thus, all the integrals,; may
lations have been obtained for connecting the expansion C(p-e de(';)ermmed by t_he prope_rtles Of h_omogenepus phéges
efficients of one- and two-particle distribution functions of @1dpy; in the vicinity of their equilibrium coexistena@in-
an interfacial layer. These relations are used for analyzing theda). , .

size dependence of the surface tensionit is shown that Noyv we shall show the transformation of integral of the
they are in complete agreement with the statistical expred@!lowing type:

sions recently obtained for the first and the second curvature 25

corrections too. A statistical expression for the second cor- L= f z,dz f der(r)fs(s)pi(z)(zl,zl+ sr,r). (A5)
rection to the surface tension has been obtained. A method 2y

for approximate evaluation of the second correction on tthsing the relation

basis of numerical experiments on simulation of a two-phase

system with a planar interface and a one-phase system has 2= (2, +2)/2 =512, (AB)

been suggested. we shall presentA5) in the form of the sum of two integrals
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By transforming the second integral on the right in the same

way as(Al), it is not difficult to show that it is equal to zero.
Thus,

PHYSICAL REVIEW 1, 011603(2004)

1 (% "
HiTT J 92 J At (Drf &) pf* (20,21 + s1.0) = i .

(A8)
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